Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems

نویسنده

  • Patrick Henning
چکیده

In this work, we are concerned with the convergence of the multiscale finite element method (MsFEM) for elliptic homogenization problems, where we do not assume a certain periodic or stochastic structure, but an averaging assumption which in particular covers periodic and ergodic stochastic coefficients. We also give a result on the convergence in the case of an arbitrary coupling between grid size H and a parameter . is an indicator for the size of the fine scale which converges to zero. The findings of this work are based on the homogenization results obtained in [B. Schweizer and M. Veneroni, The needle problem approach to non-periodic homogenization, Netw. Heterog. Media, 6 (4), 2011].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tail estimates for homogenization theorems in random media

It is known that a random walk on Z among i.i.d. uniformly elliptic random bond conductances verifies a central limit theorem. It is also known that approximations of the covariance matrix can be obtained by considering periodic environments. Here we estimate the speed of convergence of this homogenization result. We obtain similar estimates for finite volume approximations of the effective con...

متن کامل

Periodic approximations of the ergodic constants in the stochastic homogenization of nonlinear second-order (degenerate) equations

We prove that the effective nonlinearities (ergodic constants) obtained in the stochastic homogenization of Hamilton-Jacobi, “viscous” Hamilton-Jacobi and nonlinear uniformly elliptic pde are approximated by the analogous quantities of appropriate “periodizations” of the equations. We also obtain an error estimate, when there is a rate of convergence for the stochastic homogenization.

متن کامل

Flux Norm Approach to Homogenization Problems with Non-separated Scales Leonid Berlyand and Houman Owhadi

We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L∞(Ω), Ω ⊂ R) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most gener...

متن کامل

Flux Norm Approach to Homogenization Problems with Non-separated Scales

We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general ...

متن کامل

2 00 9 Flux norm approach to homogenization problems with non - separated scales

We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NHM

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012